Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing
نویسندگان
چکیده
Yeast mother cell-specific ageing is characterized by a limited capacity to produce daughter cells. The replicative lifespan is determined by the number of cell cycles a mother cell has undergone, not by calendar time, and in a population of cells its distribution follows the Gompertz law. Daughter cells reset their clock to zero and enjoy the full lifespan characteristic for the strain. This kind of replicative ageing of a cell population based on asymmetric cell divisions is investigated as a model for the ageing of a stem cell population in higher organisms. The simple fact that the daughter cells can reset their clock to zero precludes the accumulation of chromosomal mutations as the cause of ageing, because semiconservative replication would lead to the same mutations in the daughters. However, nature is more complicated than that because, (i) the very last daughters of old mothers do not reset the clock; and (ii) mutations in mitochondrial DNA could play a role in ageing due to the large copy number in the cell and a possible asymmetric distribution of damaged mitochondrial DNA between mother and daughter cell. Investigation of the loss of heterozygosity in diploid cells at the end of their mother cell-specific lifespan has shown that genomic rearrangements do occur in old mother cells. However, it is not clear if this kind of genomic instability is causative for the ageing process. Damaged material other than DNA, for instance misfolded, oxidized or otherwise damaged proteins, seem to play a major role in ageing, depending on the balance between production and removal through various repair processes, for instance several kinds of proteolysis and autophagy. We are reviewing here the evidence for genetic change and its causality in the mother cell-specific ageing process of yeast.
منابع مشابه
I-8: Somatic Cell Nuclear Reprogramming byMouse Oocytes Endures Beyond ReproductiveDecline
Background: The mammalian oocyte has the unique feature of supporting fertilization and normal development while being able of reprogramming the nuclei of somatic cells towards pluripotency, and occasionally even totipotency. Whilst oocyte quality is known to decay with somatic ageing, it is not a given that different biological functions decay concurrently. In this study, we tested whether ooc...
متن کاملComparative analyses of time-course gene expression profiles of the long-lived sch9D mutant
In an attempt to elucidate the underlying longevitypromoting mechanisms of mutants lacking SCH9, which live three times as long as wild type chronologically, we measured their time-course gene expression profiles. We interpreted their expression time differences by statistical inferences based on prior biological knowledge, and identified the following significant changes: (i) between 12 and 24...
متن کاملInitiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae
In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...
متن کاملTelomere and telomerase in stem cells: relevance in ageing and disease.
Telomeres, at the end of chromosomes provide genomic stability. During embryonic development, telomerase, a reverse transcriptase elongates the ends of the DNA. In somatic cells, the activity of telomerase decreases after birth leading to shortening of telomere with cell division, which thereby triggers senescence. In embryonic stem cells and germ cells, telomere length is maintained. In adults...
متن کاملSomatic mutations in aging, cancer and neurodegeneration.
The somatic mutation theory of aging posits that the accumulation of mutations in the genetic material of somatic cells as a function of time results in a decrease in cellular function. In particular, the accumulation of random mutations may inactivate genes that are important for the functioning of the somatic cells of various organ systems of the adult, result in a decrease in organ function....
متن کامل